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CAVE TEMPERATURES AND GLOBAL CLIMATIC CHANGE

Giovanni Badino

Abstract
The physical processes that establish the cave temperature are briefly discussed, show-
ing that cave temperature is generally strictly connected with the external climate. The
Global Climatic changes can then influence also the underground climate. It is shown
that the mountain thermal inertia causes a delay between the two climates and then a ther-
mal unbalance between the cave and the atmosphere. As a consequence there is a net
energy flux from the atmosphere to the mountain, larger than the geothermal one, which
is deposited mainly in the epidermal parts of caves.
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Introduction
The temperature inside the caves is quite constant unlike the fluids that flow inside from
the external atmosphere. The reason is that in the underground the fluids enter in thermal
contact with other substances with much larger thermal capacity.
In very first approximation we can consider a cave as a thermally insulated system in
which air and water streams flow at variable temperature. 
It is easy to show that its temperature asymptotically approaches the average fluid tem-
perature weighted with the inflowing thermal capacity fluxes (Appendix A). It is also
possible to show that the thermal capacity of inflowing water is generally much larger
than the thermal capacity of air, and its very near to the local average temperature TL

(Badino, 1995); then in very first approximation we can consider that the cave tempera-
ture T is almost equal to TL, with some important corrections that we are going to see
briefly. 
The main purpose of this work is to discuss the effects of Global Climatic Changes on
the cave temperatures.

Thermal inertia of caves
We have to calculate the thermal inertia of caves, but we can only define the thermal
capacity of something that exists, the trouble is that a cave does not exist in itself. Its ther-
mal capacity can be formally defined as the ratio between the thermal energy absorbed
by the mountain through the cave and the corresponding temperature increase of the
whole system. The cave’s lack of materiality determines that the ratio depends on the
time characteristics of energy release.
With diffusive material such as massive rock, it is usual to introduce the idea of penetra-
tion lengths, defined as 
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(1)

for sinusoidal fluctuation and

(2)

for step changes (Isachenko, 1969), (Holman, 1996). The limestone thermal diffusivity
(Lide, 1988) is a=1.0×10-6 m2 s-1, but for real rocks saturated with water, this value can
be for a factor 10 higher.
The equation (1) gives the penetration length of a sinusoidal thermal waves of period τ,
whilst equation (2), with a quite crude approximation, gives the depths to which a sud-
den temperature disturbance at the surface arrives after a time t.

period τ, or time t xsin in limestone (m) xstep in limestone (m)

1 day 0.17 0.6
1 year 3.2 10
1000 years 100 400

It is possible to see that for sudden temperature changes the “thermal capacity” of the
cave is that of stored air and water deposits, but for thermal pulses longer than a few min-
utes the rock dominates completely. In these cases we can assume that the cave thermal
inertia is the rock thermal capacity up to the penetration length of that particular temper-
ature change.
For long time-scale changes the whole mountain (from the aquifer to the top) participates
to the total thermal capacity. We can then write

(3)

Where H is the average mountain altitude above the aquifer and A is the surface.
If we assume alpine karst conditions, i.e. an average infiltration I (precipitation minus
evaporation) of 1000 mm y-1 (which corresponds to an infiltration I=3×10-5 kg s-1m-2)
and a specific air flux through the cave system of 10 kg s-1km-2, we have thermal capac-
ity rates of 0.13 and 0.01 Wm-2K-1. In the Appendix B the concept of equilibration time
Dteq of a cave system is introduced (Eq. B.2): it is the scale of time necessary to a “cave”
(in fact: to a mountain) to attain the thermal equilibrium with the flowing fluids. It is there
shown that, from another point of view, it is the time during which the total thermal capac-
ity of flowing fluids equals the total thermal capacity of the mountain (Eq. B.5).
The time scales of “cave cooling” due to water and air for different mountain “thickness”
are given in Table 1 (Eq. B.4 in Appendix B). 
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Table 1 – Equilibration time scale as function of average mountain size

H (m) ∆teq, air (y) ∆teq, water (y)

10 60 5

100 600 50

1000 6000 500

It is clear that in typical alpine situations we can assume that the cave temperature is
established by the entering water, and that the typical equilibration time scales are of
order of centuries.
In this model, the “cave” thermal capacity acts then as a capacitor in a low-pass filter,
that can be crossed by thermal fluctuation with periods lower that the equilibration time
(the time-constant of the filter). 
This means that the diurnal and seasonal fluctuations are smoothed and the cave temper-
ature becomes the average of inflowing fluids, but means also that the cave reacts to long
term temperature drifts with some delay.

Corrections for a second-order approximation
The cave temperature is then roughly the average local temperature of atmosphere, but
some corrections are needed to include important second-order effects which depend on
the cave structure and location. 
To understand the importance of these “details” it is sufficient to remember that the “cave
temperature” does not depend only on the altitude inside the mountain, but also in the
gallery, because the thermal sedimentations can be very significant.
The main corrective terms come from these effects:
1) the average temperature of precipitations is a little lower than the local average tem-

perature;
2) the geothermal flux can play an important role;
3) the entering fluids are selected in dependence of their temperature (Appendix A, Eq.

A.3). For instance, below 0 °C the water cannot enter underground and stays outside,
the air flow is stronger when the temperature difference is larger, and it is not season-
ally symmetrical;

4) the fluids enter at various altitudes, thus with many different temperatures; 
5) if the cave is very large, the temperature difference inside it, created by internal

processes (fluid heating due to vertical movements and friction inside narrow con-
duits) can be very important.

Here we simply give this list, leaving the complex discussion to a future work. 
We go now to the main aim of this work, the discussion of another similar correction: the
underground effect of external long term variations of climate.

Global climatic change
We have implicitly assumed a constant “boundary conditions”, that is a constant temper-
ature and flux of inflowing fluids. This makes sense for short times, but if we deal with
times longer than ∆teq the general climate behaviour has to be included in the calculation.
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It is well known that the climate changes in centuries time-scales (Global Climatic
Chance, “GCC” from hereafter).
The deep drilling in Antarctica and Greenland have allowed to reconstruct the Earth cli-
mate in the last half-million years, showing fluctuations of almost 10 °C in periods in the
order of 104 y. 
Also direct temperature measures show climatic drift: for instance, the average tempera-
ture in the city of Turin has changed from 12.0 to 13.5 °C in the last 150 years (Mercalli,
1997).
For relatively short periods we can assume a linear change of temperature in time

(4)

Where rgc is the rate of temperature change due to GCC, that can be positive or negative.
The experimental data show that in the last two centuries the warming rate is roughly
(IPCC, 2001)

which is slow, but significant.

Underground effects: the temperature
It is not difficult to solve the problem of the temperature T of a water reservoir supplied
by a water flux if temperature increases (or decreases) as TL=TL0+rgct (Appendix C). 
Assuming that at t=0 the temperatures of the system and the inflowing water are equal
TL0=T0 (an equilibrium condition, which means to switch on the process after a long peri-
od of stable climate) the solution becomes (Eq. C.3)

(5)

The left term is the temperature difference between the average temperature of the internal
part of the mountain (our cave…) and the “instantaneous” average external temperature TL.
This term ∆TIE is then due to the GCC and it is a function of time and mountain size. Its
value is negative in case of a global warming and positive in case of cooling, because the
mountain thermal inertia forces the system to hold at old equilibrium values. In the right
term of the same equation appears rgc∆teq, which is the main disequilibrium term

(6)

It describes the difference between the temperature of the source (the inflowing water)
and the water reservoir, after a time equal to the equilibration time scale ∆teq, in the case
there would be no mixing at all. 
In physics it is usual to interpret similar terms as the processes scale amplitudes, in this case
the amplitude of thermal unbalance between the atmosphere and the cave system.  In prac-
tice, it is the typical temperature difference between the cave and the inflowing fluids. 
In the equation this term is multiplied by a usual exponential-negative term, that fades
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the temperature unbalance with a time constant ∆teq, as reasonably expected. 
This main disequilibrium term ∆Tgc can be written in dependence on H (mountain thick-
ness) applying Eq. B.4

(7)

This equation shows that the temperature difference between a karstic mountain and the
atmosphere, according to the GCC, it is proportional to the thickness of the mountain. We
have introduced a new parameter Ggc, which is function of local water and air fluxes, and
GCC rate. 

In fact, the air fluxes depend on the cave structure, but represent a small terms in com-
parison with the water ones (PaCa<<ICw), then Ggc depends essentially on the GCC rate
and infiltration intensity.
The Table 2 shows its value for three I values.

Table 2 - Local temperature unbalance cave-atmosphere per mountain size unit

Infiltration I* (mm y-1) Infiltration I (kg s-1m-2) Ggc (K km-1)

300 1×10-5 15

1000 3×10-5 5

3000 1×10-4 1.5

Figure 1 - Dashed line: hypothetical beha-
viour of external average temperature. Full
line: cave temperature. The cave follows the
external climate with a delay ∆teq and tem-
perature shift of ∆Tgcc.
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The parameter has the dimensions of a temperature gradient (K·m-1); obviously it is not
a temperature variation inside a mountain, but the temperature unbalance cave-atmos-
phere per unit of mountain thickness. 
If we assume, as usual, that the inflowing fluids go quickly in thermal equilibrium with
the rock, we can read the above equation as an anomalous temperature increase or
decrease (respectively in case of climate cooling or warming) between the entrance and
the water springs due to GCC.

The solution behaviour
It is easy to estimate the time dependence of ∆TIE in extreme cases. Remembering that
for small x it is possible to assume that exp(x)≈1+x, the ∆TIE term for t<<∆teq becomes

It says that after a long stable period, the thermal unbalance increases linearly.
It is also interesting to estimate the long term behaviour. The temperature difference
tends asymptotically to -∆Tgcc for t >>∆teq, which means that the mountain follows the
GCC temperature drift, but with a temperature drop -∆Tgcc, that corresponds to a time-
shift of ∆teq between the internal and external climates.

Energy flow
Where does this temperature increase or decrease appears? The inflowing fluids reach a
thermal equilibrium with the rock in few metres, and then the thermal anomaly are con-
centrated in the first parts of absorbing conduits but they are then thermally diffused in
the whole mountain with its typical time scales ∆teq. Then in the same more epidermal
regions is concentrated the corresponding net energy deposition or extraction, in case
respectively of global warming or cooling.
It is easy to estimate the energy flux released by the atmosphere to the cave system due
to GCC. The energy flux is due to the thermal unbalance ∆TIE carried by the fluids, then
the applied power per square metre is given simply by

(8)

We have seen that ∆TIE can assume values between 0 and ∆Tgcc. Using this last value to
estimate the maximum possible power released to the mountain per surface unit we have

(9)

Note that the fluid flow rate has disappeared because the equilibrium time (and by con-
sequence the ∆Tgc) is proportional to the inverse of discharge, but the energy deposition
is proportional to the discharge and then the two contributions compensate each other:
the power supplied to the mountain due to GCC does not depend on the constancy of pre-
cipitations. Including the numerical values we have
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It is a specific power release of 0.05 and 1 Wm-2 respectively for H=100 and H=1000 m,
with the actual rgc value. It is good to note that a value averaged on the last 15 years gives
a figure ten times larger (Mercalli, 1997), which means that all our estimation like the
energy deposition and so on have to be increased with a factor 10... Obviously, the short-
er the average interval, the smaller is the involved rock volume, but the estimation
remains impressive and it suggests more detailed studies involving the kinetics of ther-
mal energy transfer.
Nevertheless these values are surprisingly high if compared with the geothermal flux,
0.06 Wm-2 (Veerhogen, 1956). The climatic change releases to the cave more energy than
the geothermal flux…
This fact suggests a more careful comparison between the two contributions. The geot-
hermal flux can play a role in deep karst due to focusing effects given by deep conduits
that modify the rock temperature field (Badino, unpublished), but it is in general com-
pletely intercepted by the aquifer. As a rule it has the only effect to heat the water during
the travel between the cave bottoms and the springs. The amplitude of heating depends
on the water flux that shield it. It is possible to show (Badino, 1995) that this tempera-
ture increase is

It does not depend on the mountain size and it is always positive. In the Table 3 its val-
ues are compared with the maximum unbalance amplitudes due to the GCC, that can be
positive or negative.

Table 3 – Temperature drops due to geothermal flux and GCC vs infiltration

Infiltration I* (mm y-1) ∆Tgt, (K) ∆Tgc, H=100 m, (K) ∆Tgc, H=1000 m, (K)

300 1.5 ±1.5 ±15
1000 0.5 ±0.5 ±5
3000 0.15 ±0.15 ±1.5 

It is interesting to note that the smaller is the net precipitation, the larger are the two
unbalance terms, that compete in the case of global warming, as nowadays, or they add
in case of global cooling. But it is necessary to emphasize that the two energy fluxes are
applied at different regions, the aquifer the geothermal term and the mountain upper layer
the other. This can obviously create strong thermal unbalance inside the mountain. 
All these processes can affect the karst chemistries underground and thus, reasonably,
leave a track in the cave genesis and in its structural details, mainly in the more epider-
mal parts of mountain. 

Conclusions
The caves allow the thermal inclusion of karstic mountains into the atmosphere and, as
a consequence, the whole mountain temperatures attain essentially the local average tem-
perature of the external atmosphere.
Their enormous thermal capacities act as low-pass filters with the crossing fluids and cre-
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ate a delay in the processes of equilibration atmosphere-mountain.
These delays prevent the mountain to follow synchronously the global climatic fluctua-
tions, maintaining a disequilibrium that causes strong energy fluxes between the atmos-
phere and the caves, essentially concentrated in the cave parts more exposed to the exter-
nal fluids.

Appendix A
Let us estimate the equilibrium temperature T of a system S with thermal capacity C
crossed by fluids. Each entering volume V of fluid (thermal capacity Ca, density ra) at Ta
exchanges with S a thermal energy E given by

Let us call F(t) the entering fluids flux (cubic metre per second) at temperature Ta(t). In
general F(t) is very complex and depends on meteorology.
In a sufficiently long time period t0 the energy released to S is

(A.1)

And the temperature change of S is

It is obvious that S warms when the fluids release energy to it, and cools when they sub-
tract it; this trivial observation allows to say that the asymptotic temperature value of S
is the value able to zero the algebraic sum of fluids energy fluxes, that is 

If we assume that the average daily temperature during the year oscillates with amplitude
∆T around a mean Tm

(A.2)

with ∆t phase of the year, we obtain 

(A.3)

The second integral is zero if F(t) is able to preserve the symmetry of the sinusoidal func-
tion. 
In fact this is a very strong assumption, and it is possible to show that in natural condi-
tions it may occur that F(t) does not have this fundamental property (in other words,
water and air fluxes are “selected” depending upon their temperature) and a corrective
term to the first integral appears. In general, anyway, these are small corrections and only
the first integral holds. 
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It is easy to see that it is zero if the temperature TC of system S, the cave, it is equal to
the average temperature of entering fluids, that in general can be assumed to be TL, aver-
age local yearly temperature.

Appendix B
Let us consider a system S with thermal capacity C and temperature T0. 
At t=0, through S it begin to flow a fluid at rate FT1 (in thermal capacity rate (J K-1s-1))
with temperature T1: we want here to estimate the time evolution of system temperature
T(t).
In a time step dt the fluid releases thermal energy which causes an increase of system
temperature 

.

Solution of the equation gives the time dependence of T

(B.1)

The behaviour is shown in Fig. 2 for two different T0. The system temperature asymptot-
ically approaches the temperature of the fluid with a time-scale 

(B.2)

which we define as the “equilibration time”. 
If we have many entering fluids at different temperatures Tj the solution can be general-
ized, with obvious meaning of symbols

(B.3)

If we assume that the whole mountain participates to the thermal exchanges (H is the
average mountain altitude above the aquifer), and call P the net precipitation intensity, Pa
the air flux intensity and CR, Cw and Ca respectively the thermal capacity per mass unit
of rock, water and air, we have

(B.4)

A cave acts as a low-pass filter with a time constant ∆teq. This fundamental parameter can
be read also as

(B.5)
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The equilibration time of a cave is the time during which the total thermal capacity of
flowing fluids equals the total thermal capacity of cave.

Appendix C
Let us consider a system S with thermal capacity C and temperature T(t), with T(0)=Ts0. 

System is fed by the water with thermal capacity rate F=ICw, with a temperature that lin-

early increases 

(C.1)

Let us assume a complete mixing between S and the entering flux. 
The energy conservation at time t states that the energy released by the water, that enters
at Ts and goes out at T is responsible for the temperature increase dT of the system S

The differential equation is then

(C.2)

We recall that the ratio F/C is the inverse of equilibration time scale ∆teq (Eq. B.4). This

differential equation can be solved, quite laboriously, with the substitution

The solution is

(C.3)

If we assume that at t=0 the inflowing fluid is at the thermal equilibrium with S (that is
Ts0=T0), we obtain the S temperature at t

and its difference with the temperature of entering fluid is

(C.4)
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We can call 

It is the magnitude of difference between the temperature of the inflowing water and the
system after equilibration time in the case of no mixing. 

Symbols
a rock thermal diffusivity (m2 s-1)
Ca air thermal capacity per mass unit (J K-1kg-1)
CR rock thermal capacity per mass unit (J K-1kg-1)
Cw water thermal capacity per mass unit (J K-1kg-1)
∆teq thermal equilibration time cave-atmosphere (s)
∆Tgc thermal unbalance scale value cave-atmosphere
DTIE instantaneous temperature difference cave-atmosphere
Fgt specific geothermal power (Wm-2)
Fw thermal capacity flow rate of inflowing water (W K-1)
FTj thermal capacity flow rate of j-inflowing fluid at temperature Tj (W K-1)
Ggc local temperature unbalance cave-atmosphere per mountain thickness unit (K m-1) 
H average mountain altitude above aquifer (m)
I water infiltration underground (kg s-1m-2)
I* water infiltration underground (mm y-1)
Pa specific air flux through the cave system (kg s-1m-2)
rgc climate temperature change rate (K s-1)
ra air density
rR rock density  (kg m-3)
rw water density
T Instantaneous cave temperature (°C)
TL local average yearly temperature (°C)
TL0 cave temperature at starting time (°C)
xsin penetration length of sinusoidal thermal disturb in limestone (m)
xstep penetration length of step thermal disturb in limestone (m)
Wmax maximum thermal power flux atmosphere-cave (Wm-2)
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